ANYmal is a four-legged robot, designed to autonomously perform long endurance inspection.


Weight 30 kg
Height 0.5 m
Actuation 3 actuated compliant joint modules with integrated e
Joint rotation 360 °
Link length 250 mm
Torque control bandwidth +70 Hz
Battery life 2-4 hrs : autonomous operation and independent docking
Power of onboard batteries 650 Wh
Full-speed running power consumption < 280 W
Environmental perception 4 Optofoce sensors used as tactile feet
2 Rotating Hokuyo UTM-30LX LIDAR sensors in the fr
2 Wide-angle cameras in the front and back
IP code IP-67 Compliance
Compliance ATEX compliance


Physically ANYmal resembles a medium-sized dog. It weighs 30 kg, is 0.5m tall, operates for 2-4 hours on a charge, and connects to a docking station independently. Anymal’s payload can range from simple sensors to complex robotic arms and the versatile machine was built specifically to work in the difficult surroundings of industrial sites, comprising of stairs, gaps, pipes and other obstacles.

The versatile machine can adapt its posture and omni-directionally move with statically and dynamically stable gaits.

To cope with impulsive forces at fast locomotion ANYmal contains custom developed compliant joint modules with integrated electronics. The robot is constructed of a single carbon-fibre lightweight body, with 12 identical joint units connected by simple mechanical links.

Environmental perception is enabled through rotating line-LIDAR sensors, stereo and wide-angle cameras; sensors in the rubber feet provide haptic information, enabling safe locomotion even in case the robot is completely blind. For industrial inspection, ANYmal is equipped with a pan-tilt head with various sensors, including an optical zoom and thermal camera, a gas detection sensor, an ultrasound microphone for gas leak detection, as well as artificial LED lighting.

ANYmal can survive falls from over 0.5m height; sensors are equipped with a fall-protection housing, foam absorbs the impact of side falls and a Kevlar belly protects from sharp objects below. It is sealed against water and dust ingress.

Design Goals

  • Large mobility
  • Fast and dynamic locomotion skills
  • High robustness
  • Simple maintenance
  • Safe handling by a single operator

A quadruped design was chosen to meet the required mobility and versatility for operating in unstructured industrial environments.

Design Setup

Modular Design
The design goal of a rugged and simple maintain system, as well as simple setup was approached with a modular design for the hardware and software. Specifically, the modular joint units called ‘ANYdrive’ allow to create robots of different kinematic structure. In case of failure, these modules can be easily and quickly exchanged without special knowledge. The of ANYmal simplifies setup and maintenance.

Hierarchical Design
ANYmal is designed in a hierarchical manner: On joint level, every actuator module is connected over a CAN bus and works independently. This allows component-level ingress and ATEX protection as well as fast and simple maintenance in case of hardware failure.

On system level, computation is split among three independent computers that are connected through an internal network. The first computer (locomotion) hosts all real-time critical elements required for locomotion control and to interface the joint modules. The second computer (navigation) is responsible for environmental perception, localization, navigation, and mission execution, i.e. all software parts that are required to autonomously operate the robot. The third computer (inspection) runs all algorithms for inspection and detection.

Physical Structure

Image Design 02 - Overview

Physically, Anymal is constructed of a single lightweight body, and the 4 legs contain 3 identical actuated joints per leg, linked by simple, rigid mechanical links and connected with a CAN bus for power and communication. The legs have point feet.

Similar Specs

View all Tech Specs

project specification

Big Dog

A quadruped robot that walks and carries heavy loads. The robot works as a pack mule to assist soldiers in carrying their gear. BigDog is developed to function as a mechanical mule. The powered a...

project specification


A four-legged walking robot capable of (semi-) autonomous operation in extremely difficult environments, especially very uneven and steep terrain. The ARAMIES robot has 26 active joints, 6 in each le...

project specification

SEA Snake

A robot which consists of a series chain of 1-DOF modules capable of torque, velocity and position control. Each module includes a high-speed Ethernet communications bus, internal IMU, modular electr...


Describes the design of the ANYmal project at a high level.

Describes the design of the ANYmal project at a high level.

Provides a system overview of ANYmal and how it's optimized for operation in harsh environments. Goes into details regarding mechanical design, software architecture, drive system, and locomotion control.

M. Hutter, C. Gehring, A. Lauber, et al. - FSR Conference 2017 [Paywall]

Provides an insight into the approach taken by team LIO during the ARGOS Challenge, a robotics competition which stands for Autonomous Robots for Gas and Oil Sites.

M. Hutter, R. Diethelm, S. Bachmann, et al. FSR 2017 Conference Paper.

Describes the underlying mechanics and actuation concept, illustrates the electronics and software setup, sketches out the applied locomotion control algorithms with appropriate references to their implementation, and finally summarizes the paper with a series of experiments highlighting the overall

M. Hutter, C. Gehring, D. Jud, et al. - IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), December 2016.

Wevolver 2022