project specification

MultiSense SLB

A tri-modal high-resolution, high-data-rate, and high-accuracy 3D range sensor.

Carnegy Robotics


Height 19.1 cm
Width12.7 cm
Depth13.0 cm
Operating temperature -10 / +50 °C
Input voltage 24 V DC nominal
18 - 47 V MAx
Power draw 20 W nominal
75 W @ peak RPM /full lighting
InterfacesGigabit Ethernet Opto-Isolated Input Opto-Isolated
Stereo details
Algorithm Semi-global-matching
Range 0.4 - 10 m
Std Lens FOV 80 x 45 °
Focal length 6.5 mm
CMOSIS CMV20002MP 7.5 FPS, 128 disparities
Mono or Color Bayer 1MP 15 FPS, 128 disparities
0.5MP 30 FPS, 128 disparities
Depth Resolution@ 1m +/- 0.3 mm
@ 10m +/- 30 mm
Laser details
Model Hokuyo UTM-30LX-EW
Laser905 nm class 1 laser
Scan rate 40 Hz
Field of view270 degrees
Angular resolution 0.25 degrees (1081 samples per scan)
Detection range 0.1 - 30 m
+/-30 mm (0.1m-10m)
+/-50 mm (10m-30m)
Multi-Echo Up to 3 returns per sample
IP rating IP67


The sensor is suitable for use in a wide variety of robotics, automation, and sensing applications, such as autonomous vehicles, 3D mapping, and workspace understanding. The MultiSense SLB is packaged in a rugged, compact housing, along with a low-power FPGA processor, and is pre-calibrated at the factory.

The original MultiSense SL is the sensor of choice for the Atlas humanoid robots in the DARPA Robotics Challenge (DRC). As the “head” of the humanoid, the SL provides the majority of perceptual data used for tele-operation as well as automated control. 

The MultiSense SLB produces 3D point clouds from both the spinning laser and the stereo camera which are accurately aligned and colorized onboard the sensor.  The stereo sensor provides extremely dense “full frame” range data at high frame-rates, which is complemented by high accuracy data, at lower rates, from the spinning laser.  The sensor can also output standard color video.

The MultiSense SL combines a Hokuyo UTM-30LX-EW laser and a Carnegie Robotics updated MultiSense S7 high resolution stereo camera into a fused GigE device. The Hokuyo—which outputs 43,000 points per second—is axially rotated on a spindle at a user-specified speed. The stereo camera has a 7 centimeter baseline and can be configured with either a 2 or 4 megapixel sensor, making it the highest resolution commercial stereo camera available to date. On-board processing handles image rectification, stereo data processing, time synchronizing of laser data with a spindle encoder, spindle motor control, lighting timing, and managing the GigE interface. The GigE output includes time-synced laser and stereo data in a ready-to-use format. The advantages of this architecture are that a powerful external computer is not needed for stereo processing, and that the user does not need to provide stereo processing algorithms or stereo/laser calibration. Each MultiSense sensor ships fully calibrated from the factory.

The stereo portion of the MultiSense SLB can find over 11 million feature matches every second. A precise calibration process creates the necessary information to transform the pixel-level information into an accurate range measurement, while also compensating for lens distortion, small variations in lens alignment, and other manufacturing tolerances. The stereo point cloud can be augmented by overlaying color image data onto the point cloud—resulting in compelling, very low latency, life-like 3D data sets.

A ROS-based API and tools allow you to view live image and 3D range data; adjust laser, camera, and stereo parameters; log data; playback logs; check the unit's calibration; and change the sensor's IP address.  An open-source C++ library and Gigabit Ethernet interface make it easy to integrate live data into your robot, vehicle, mobile equipment, lab environment, or other application.


Describes the project, specifications, and links to CAD file downloads.


Describes the compatibility, installation, troubleshooting.



Autonomous Ground Vehicles (AGVs)laser scannerstransportation

Continue Reading

Everything you should know before your next conversation about self-driving cars

A Beginners Guide to Self-Driving Cars

Autonomous driving is no longer sci-fi, it’s become a reality and soon to be hitting our streets. Every week, Autotech companies are announcing their plan for self-driving tech. But, no two autonomous driving technologies are exactly alike.

Autonomous Driving Levels 0-5 Explained

Car sharing with autonomous vehicles could improve cities in many different ways. Singapore is taking a pioneering role, working with ETH researchers to explore the potential of personalised, electrified and automated public transport.

Algorithms take the wheel