Michigan Engineering researchers have developed filtered b-spline (FBS) algorithms to speed up consumer 3-D printers without sacrificing quality. The research was conducted in the Smart and Sustainable Automation Research Lab at the University of Michigan College of Engineering under associate professor of mechanical engineering Chinedum Okwudire. The research was led by PhD candidates Deokkyun Yoon and Molong Duan.
A major drawback to 3-D printing – the slow pace of the work – could be alleviated through a software algorithm developed at the University of Michigan.
The algorithm allows printers to deliver high-quality results at speeds up to two times faster than those in common use, with no added hardware costs.
One of the challenges for today’s 3-D printers lies in vibrations caused as they work. A printer’s movable parts, particularly in lightweight desktop models, cause vibrations that reduce the quality of the item being produced. And the faster the machine moves, the more vibrations are created.
“Armed with knowledge of the printer’s dynamic behavior, the program anticipates when the printer may vibrate excessively and adjusts its motions accordingly,” said Chinedum Okwudire, an associate professor of mechanical engineering who directs U-M’s Smart and Sustainable Automation Research Lab.
To ensure details are reproduced accurately, the machines are operated slowly. And the pace of 3-D printing is one of the factors that has prevented the technology finding a broader audience.
Armed with knowledge of the printer’s dynamic behavior, the program anticipates when the printer may vibrate excessively and adjusts its motions accordingly.
-Chinedum Okwudire
Okwudire cited statements made last year by one 3-D printing company executive about the issues holding the industry back.
“We’re just waiting for the next evolution of the technology,” Simon Shen, CEO of XYZ