Impact Resistant Bio-Structures

Last updated on 02 Oct, 2020

author avatar
Computational modeling of the mantis shrimp’s telson armor allows for its application in impact-resistant

Computational modeling of the mantis shrimp’s telson armor allows for its application in impact-resistant

Taking a look at what nature can teach us about mitigating collisions. The third NFL Helmet Challenge DfAM eSeries Guest Blog

This article was first published on

ntopology.com

With the prevalence of engineering design and materials development at the forefront of additive manufacturing, there is still a lot to learn from nature when it comes to the design of advanced components. When accounting for strength-to-weight ratio, biological structures often vastly exceed man-made material impact resistance even when compared to the most cutting-edge research out there. The structural principles that define these biological “armors” are profound and groundbreaking. But there is a modeling limitation on these structures – how do you utilize current tools to define these structures in 3D for use? Up until now researchers have used computational modeling to evaluate certain biological structures, but usually this is for a one-off test or visualization. The use of such structures as applied to commercial applications has been limited by the current software and modeling technology. In my upcoming webinar, I step through several biological structure examples – the telson armor of the mantis shrimp, the specialized bones of the bighorn sheep – and analyze how they provide an unprecedented amount of impact resistance. 

The analysis of these creatures’ biological structures offers us a glimpse into how we might borrow design elements to better resist impacts 

But understanding how these structures look is only the first (and easiest in some respects) part of the problem. I then move into the complex computational modeling of these structures as periodic (i.e., repeatable) implicit elements that can be readily used to fill 3-Dimensional spaces (such as football helmets, body armor, etc.) at any scale – without sacrificing speed of use or quality. 

Computational modeling of the mantis shrimp’s telson armor allows for its application in impact-resistant 

The modeling of these structures also accounts for a wide range of user inputs so as to be infinitely controllable.


This article was first published on the nTopology blog.

More about nTopology

nTopology is a software company building the next generation of engineering design tools for advanced manufacturing. Our award-winning software, nTop Platform, enables engineers to take their product development workflows to the next level. It is trusted by industry leaders and innovators in the a...